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With molecular docking being a crucial tool for drug dis-
covery, the number of docking softwares, both commercial and
open-web, have significantly grown over the years. This raises
the necessity of identifying the predicting software that is the
most accurate, efficient, and multifaceted. After docking 10 lig-
ands with their respective receptors through 8 different soft-
wares, resulting binding affinities were compared to literature
values in order to analyze accuracy. The speed and versatil-
ity of each software was recorded as well. Due to AutoDock
Vina’s major prevalence and reputation in the scientific com-
munity, we predicted that it would successfully rank the highest
given all the criteria. Out of the 8 softwares evaluated, ParDock
produced values closest to each molecule’s real binding values,
followed closely by DINC, AutoDock Vina, and CB-Dock. After
taking into account both speed and versatility, AutoDock Vina
ranked the highest followed by DINC and CB-Dock. The under-
standing of these accessible software’s features and results can
potentially improve the future of molecular docking.
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Introduction

Structure-based Drug Design
Molecular modeling for the purpose of structure based eval-
uations of molecular level interactions has been critical in
modern pharmaceutical chemistry. Methods for biomolecu-
lar spectroscopy allow for critical examination of key macro-
molecular drug targets1. As such, structure based design
methods which utilize three dimensional structural informa-
tion regarding its targets is an emerging aspect of modern
pharmaceutical chemistry. Among such methods, molecular
docking allows for the analysis of binding energies, molecu-
lar interactions, as well as conformational shifts. Molecular
docking seeks to predict the conformation of two biological
binding partners, typically a peptide or protein with a small

macromolecule, such as ligands or drugs2.

Docking Softwares
Docking at the molecular level is a process which involves
conforming the ligand to its target receptor in the right pose
so as to minimize binding energies. Geometric and electro-
static interactions play a critical role in quantifying the accu-
racy of the orientation of the ligand to the active site of its
targeted receptor. As such, Coulombic and Van der Waals in-
teractions, which quantify the interactions between the elec-
trical charges of the molecules, in addition to the formation
of hydrogen bonds, are summed together to form a binding
score which is indicative of the binding potential between the
two molecules3. Docking softwares work by incorporating
search algorithms which recursively search the orientation of
the ligand until the binding energy of the ligand to the recep-
tor is minimized.

Theoretical Basis of Docking
Over the past few decades, theories and methodologies de-
veloped in regard to molecular docking are used as the fun-
damental base of operation for the majority of docking soft-
wares. The earliest records of docking methodology are
based off of Fischer’s lock and key model which proposes
that the optimal conformation is when the substrate, such as
the ligand of the drug fits into the active site of the macro-
molecule such as a protein or a peptide, similar to the confor-
mation in which a lock fits into a key4,5. In essence, it ideated
the concept of rigid docking in which both the ligand and the
receptor are treated as rigid bodies, and in which the binding
affinity score holds a proportional relationship to the geomet-
ric fit of the ligand to its targeted receptor. The induced-fit
theory, introduced by Daniel Koshland in 1958, proposes a
more flexible style of docking in which both the target and
receptor make minor conformational and geometric changes
to adapt to each other’s core shapes in order to optimize their
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best fit2. The movement affects several side chains in con-
trast to typically independent side chains. As a result of this
flexibility and ability to adapt, flexible docking algorithms
are able to implement higher accuracy and efficiency in pre-
dicting both binding affinities and modes in comparison to
their rigid body docking counterparts3. In addition to the
small induced fit methodology, the ensemble of conforma-
tional states model observes the more major conformational
changes undergone by proteins and peptides and capitalizes
on the plasticity of proteins which allows them to switch from
one state to another6. These individual models and method-
ologies of molecular docking developed over the years each
highlight a specific portion of the molecular recognition pro-
cess. While Fischer’s model focuses on the 3D complemen-
tarity of the protein and the ligand, the induced fit model
works on the process of molecular modification to achieve
the best complementarity, and the ensemble model highlights
the conformational complexities of the molecules5.

In recent years of study in structure based drug design,
more than 60 softwares have been developed for the purposes
of both academic and commercial use, such as AutoDock,
Autodock Vina, Blaster, HADDOCK, ParDock, PatchDock,
DINC, and SwissDock3. The approaches utilized by these
softwares range from shape-based algorithms to incremen-
tal recursive approaches to genetic construction approaches.
Albeit some exceptions amongst these softwares, a vast ma-
jority of flexible docking programs capitalize on the flexibil-
ity of the ligand while treating the receptor as rigid7. The
programs are evaluated based on their ability to predict the
optimal binding pose while minimizing the binding energy it
takes to achieve the most optimal conformation.

Algorithms and Scoring Functions of Docking
In order to distinguish among numerous softwares, two com-
ponents of molecular docking are assessed: sampling algo-
rithms and scoring functions. Due to the several degrees
of freedom of both the ligand and protein, as well as the
six degrees of translational and rotational freedom, the num-
ber of possible binding poses between the two molecules is
too large for even modern computers to generate in a short
amount of time. Thus, sampling algorithms are incorporated
to identify the best possible conformations8. Matching algo-
rithms (MA) match a ligand to an active site based on molec-
ular shapes and chemical properties. Ligand conformations
are generated by recording distances between the pharma-
cophore, within the protein and ligand, and the respective
ligand atoms. Hydrogen bonding is taken into consideration
during the match as well. With the high speed feature, these
algorithms are used in DOCK and SANDOCK softwares9.
Another common method is the Monte Carlo. These algo-
rithms utilize bond rotation and rigid-body translation or ro-
tation to form possible modes of the ligand. The resulting
conformation is weighed against an energy-based criterion5.
This method, which is integrated in the AutoDock and Affin-
ity program, allows the ligand to pass through energy bar-
riers at a higher degree. Genetic algorithms (GA) indicate
that the ligand’s degrees of freedom are translated to genes,

which make up chromosomes. These chromosomes repre-
sent the modes of the ligand. Two factors are highlighted in
GA: mutation and crossover5,8. Mutations can change the
genes in an unpredictable manner, while crossover switches
genes on two chromosomes. When these factors impact the
genes, new ligand structures are formed. AutoDock, GOLD,
and DARWIN are popular softwares that use genetic algo-
rithms10. Molecular dynamics (MD) is one of the most pow-
erful simulation methods in molecular modeling. Compared
to other algorithms, MD simulations depict the flexibility of
the ligand and protein more accurately and effectively. How-
ever, MD simulations may lead to insufficient sampling, as
they have a hard time passing through high energy barriers.
To overcome this disadvantage, a random search, as well as
mini MD simulations, can be utilized to recognize the ligand
conformation4.

Scoring functions make up the second component of
molecular docking, and are crucial in ranking resulting poses.
These functions assess the quality of docking conformations,
while guiding the search algorithms towards accurate lig-
and modes. The first necessity of a scoring function is to
discern the experimentally observed poses from the poses
found by the search algorithms11. The second requirement
is to distinguish active and inactive compounds, and the fi-
nal goal is to predict binding affinities. This step of bind-
ing affinity prediction ranks the compounds in order, plac-
ing the most potent poses at the top. Scoring functions are
generally classified into force-field based, knowledge-based,
and empirical functions11,12. Force-field functions, utilized
by DOCK and DockThor, involve calculating energy terms
from a force field and considering interactions between the
protein-ligand complex. Knowledge-based functions include
a statistical analysis of atom pairs in the complex, and are
used by DrugScore and PMF. Empirical scoring functions re-
produce experimental data and employ binding affinity data
of experimentally based structures. In other words, absolute
free energy of binding can be predicted from 3D structures of
the complex4,11.

Types of Docking
Rigid body docking focuses on the existent surface comple-
mentarity of the ligand and the receptor, thus producing a
large number of conformations and potential binding poses
which undergo the process of ranking in accordance with
the free energy of approximation associated with each of the
conformations. The Fast Fourier transformation utilizes elec-
trostatic interactions to explore the potential docking space,
with the docking potential being limited to a correlation func-
tion form. The deployment of the transformation allows the
search space to be expanded to a 3D space via spherical de-
composition. Albeit having good surface complementarity,
rigid docking algorithms often produce false-positives and do
not adapt well to unbound crystal structures3.

In recent studies, the flexibility of side chains has
proven to have a critical role in the docking of protein-ligand
complexes3. As a result, the binding site of the receptor can
be adapted to the specific orientation of the ligand. Presently,
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Monte Carlo methods, in site combinatorial searches, ligand
buildup, and site mapping are the primary strategies used in
the flexible docking of ligands3,13. As such, the large con-
formational modifications used in the mentioned methods al-
lows the ligand to overcome energy barriers. Potential molec-
ular affinities combined with conformational searches allows
for an increased efficiency in the process of substrate docking
for known structures13.

This study aims to identify the most optimal software
for molecular docking, while weighing in factors of accu-
racy, speed, and versatility. 10 molecules were docked using
8 different docking softwares and web servers, and resulting
binding affinities were found. These values were compared
against the literature binding affinities. Molecular docking
has long been used in the scientific community for the pur-
poses of drug discovery. The analysis of this study seeks to
aid in the debate over best methods of docking both commer-
cially and academically.

Methods

Optimization Via Molecular Mechanics
A total of 10 known ligands and their receptors were used
to test the accuracy of 8 docking softwares respectively: As-
pirin and Cyclooxygenase, Taxol and Beta-Tubulin, Doxoru-
bicin and DNA, Acetaminophen and Naloxone, Monastrol
and EG-5 Kinesin, Berberine and TLR4-MD-2, Anthramycin
and DNAse 1, Donepezil and Acetylcholinesterase, Ibupro-
fen and Cyclooxygenase, and Atorvastatin and HMG-coA
reductase, depicted with their respective structures and PDB
codes in Figure 1. Prior to performing density functional the-
ory (DFT) optimization, molecular mechanic optimization
was performed on the 10 subject ligands. To execute the
above described optimization, Avogadro (2016), which al-
lows for molecular editing and visualization, was utilized14.
The optimization was performed using the Universal Force
Field (UFF) to 10,000 steps. The optimized structure of the
molecules was then used as the input for DFT structural op-
timization.

DFT Optimization of Molecules
Density functional theory optimization, a method that per-
forms ground-state calculations on rigid molecules, is used to
increase the accuracy of the molecular shape and increase its
versatility in terms of usage with regard to molecular dock-
ing. ORCA (2018-4.2.1), a quantum chemistry program, was
used side by side with Avogadro to perform DFT optimiza-
tions on the ten ligands. A conductor-like polarizable contin-
uum (CPCM) solvation model of water was used side by side
with the RIJCOSX approximation approach while perform-
ing DFT with the B3LYP functional, a hybrid functional cho-
sen for its speed and accuracy in comparison to other func-
tionals that would have a more unfavorable trade-off on dura-
tion for higher precision. The def2-SVP basis set, containing
the polarization of all atoms, was used alongside the approx-
imation and functional systems. The completed optimized
files were converted to the appropriate mediums to adapt to

the input requirements of the eight following docking soft-
wares.

Fig. 1. Ligand, Receptor, and Complex Information

SwissDock
Formulated by Swiss Institute of Bioinformatics, the Swiss-
Dock software utilizes the EADock DSS algorithm method-
ology wherein several binding modes are generated within
given grid coordinates and parameters or within the general
area surrounding the target site, as in the case of blind dock-
ing15,16. In parallel to this, the CHARMM energies of the
binding modes are approximated17. The binding energies
formulated are evaluated using FACTS, an efficient gener-
alized Born implicit solvent model, and clustered accord-
ingly. The conformations of the most optimal energies are
then outputted for visualization through the software16. In
this study, we evaluated the efficiency of the docking poten-
tial of the software by establishing a comparison between lit-
erature binding affinities of the tested molecules and the free
binding energies produced by the molecular docking soft-
ware. We focused on docking the optimized ligand structure
to the molecular complex of the ligand bound to the recep-
tor. The software produced the best optimized conformation
alongside a ranking of the different binding poses and their
corresponding binding affinities. The free binding energies
are presented in kcal/mol, being directly comparable to the
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literature binding affinities, and is indicative of the binding
energy of the ligand to its receptor.

PatchDock
PatchDock, created by the Swiss Bioinformatics Group
alongside the team of the Tel Aviv Computer Science School,
implements a molecular docking algorithm based on shape
complementarity principles to dock proteins, peptides, and
drugs through techniques typically utilized in Computer Vi-
sion, such as object recognition and image segmentation18,19.
When implemented, the algorithm produces a wider interface
area as well as a series of minor steric clashes. The algo-
rithm transitions through the stages of molecular shape rep-
resentation, surface patch matching, and filtering and scor-
ing respectively. The program first computes the surface of
the molecule so as to filter out geometric patches and main-
tain only the patches with “hot spot” residues, organizing the
Connolly dot surface representations into concave, convex,
and flat sectors in order to do so18,20. Geometric hashing
and pose-clustering matching methods are then applied to
match the patches which were previously filtered. Individual
candidate transformations are further evaluated via a scoring
function, taking into consideration both desolvation and ge-
ometric binding energies18. An RMSD, or root mean square
deviation clustering, is then applied to remove redundancy in
the solution set of conformations. The increased efficiency of
the molecular docking program is instigated by the quickened
pace of its transformational search which relies on the feature
matching system rather than a search of the potential confor-
mational space. This allows for average sized protein jobs
to range less than 10 minutes in complete execution of the
docking process21. For the purpose of this study, along the
inputted receptor and ligand, the clustering RMSD condition
was left at 4.0 and the complex type was set to protein-small
ligand. The software produces a web results page with the
top 20 binding conformations and poses with a solutions ta-
ble which incorporates a geometric score, desolvation energy,
size of the interfaced area, and the actual rigid transformation
within itself.

ParDock
Developed by Professor B. Jayaram and team of the Indian
Institute of Technology, New Delhi, PARDock, or Paral-
lel Dock, utilizes a web based Monte Carlo docking sys-
tem which works as an automated, parallelly processed func-
tion6. In the program, the Monte Carlo methodology is
used in a six dimensional space in order to explore a larger
quantity of conformations in search for the optimal loca-
tion to bind to the targeted molecule. The docking sys-
tem contains a broad dataset of a total of 226 protein-
ligand complexes comprising 81 unique proteins taken from
RCSB online portal. The software uses the inputted protein-
ligand complex to automate a process for optimizing con-
ditions for docking the inputted candidate ligand molecule.
The docking program optimizes the ligand’s geometry via
the AM1, or Austin Model 1 method, followed by the
process of determining the partial charge via the AM1-

BCC methodology, which uses Mulliken-type partial charges
taken from the AM1 quantum mechanical wave functiontri-
pathi2017molecular,sousa2013protein. The AMBER force
field is deployed to automatically assign the atom types, bond
angles, dihedral and Van der Waals energies, and other pa-
rameters for the subjected ligand. Albeit the efficiency of the
automated process, the accuracies of binding site predictions,
and the capacity for flexibility of both the protein and ligand,
remain as deficit qualities of the docking software program22.
For this study, the ligand was specified to be docking to the
active site of the protein as opposed to the entirety of the
molecule, using 500 minimal cycles, and a ligand flexibility
mode of 5. The software outputs the most optimal confor-
mation as a visualization, while providing the top 4 binding
poses with the optimal binding energies DG(kcal/mol) with
downloadable conformation visualizations for each.

DockThor
DockThor is a web server flexible docking software that pre-
pares ligands and receptors for all types of docking method-
ologies and utilizes the JSMOL java-based graphical user in-
terface to visualize 3D versions of predicted complexes23–25.
It was used to blindly dock the ligands to the receptors, which
were uploaded in .pdb format. No protection states were al-
tered, no cofactors were used, the rotatable bond editor was
disabled, and the algorithm precision section was not speci-
fied.

AutoDock Vina
Unlike the other web softwares, AutoDock is an open-source
program for molecular docking that can function on an ex-
ecutable file26. Compared to AutoDock 4, Vina achieves
a significantly higher binding accuracy in less time. This
study utilized Chimera, a visualization application, rather
than through the more-commonly seen command-line ap-
proach, to run AutoDock Vina. Using a gradient optimization
method, Vina can rank the poses effectively. The predicted
binding energy is calculated through assessing intermolecular
attractions of the lowest-scoring conformation27. The recep-
tor was prepared using the DockPrep feature, adding charges
where necessary. Grid coordinates were specified and ad-
justed accordingly to visually encompass the residue at hand,
indicating a potential active site.

DINC
Docking Incrementally, otherwise identified as DINC, was
created by the Kavraki Lab at Rice University to perform
more seamless docking processes of large ligands28,29. It de-
ploys an incremental algorithm in order to perform an effi-
cient search for the space in which potential binding modes
and conformations may be created between the ligand and the
receptor28,30. The incrementing algorithm allows for easier
processing of information by breaking down the search so as
to optimize each one before proceeding to the next. Through
the software, the ligand is treated as the superposition of a
rigid body and rotatable component respectively. The search
space is thus expanded for the ligand with numerous rotat-
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able components. With its incremental approach, the “par-
tial solutions” formulated at the end of each stage of docking
correspond to contiguous sections of the ligand and are ex-
panded through the process of adding atoms to the individual
fragments till the ligand’s original structure and composition
is restored30. The software treats a certain set of rotatable
bonds as active in each of the stages of incremental docking.
Furthermore, DINC follows a meta-docking approach, rely-
ing on AutoDock Vina, a standard docking tool to perform
sampling and score in each stage of the process. At the end of
the process, the most optimal conformations are ranked and
presented, based on binding energy ranking, with the high-
est ranked conformation visualized31. Along with binding
energy, DINC also sorts out conformations based on RMSD
clustering, or the root mean square deviation of atomic po-
sitions, which measure the average distance between atoms
of the superimposed proteins, and provides the most optimal
distance through a visualization32.

Achilles
Achilles is a simple blind docking web server that special-
izes in small-molecule docking by incorporating AutoDock
Vina’s functionality. Utilizing pose clustering, cluster dis-
tance, and binding energy plots, the docking results can easily
be imported to PyMOL, its supported visualization system,
for further examination. The ten ligands and their receptors
were uploaded in .pdb format to dock.

CB-Dock
CB-Dock (Cavity-detection guided Blind Docking) is a web
server which automatically recognizes binding sites, calcu-
lates grid coordinates for the center and size, and completes
molecular docking using AutoDock Vina33,34. Cavity-based
docking has been proved to output a higher accuracy of
conformations and hit-ratios. The software goes through 4
stages. Because this software was developed to perform blind
docking at sites which have already been predicted, the pro-
cess begins with detecting cavities and respective binding
sites (cavity detection). The next step, cavity sorting, selects
various top cavities according to the size. The final stage,
Dock and Rerank, arranges and ranks the resulting poses ac-
cording to a docking score. Input files remain in the .pdb
format for ligands and .pdb or mol2 for receptors35. The best
binding pose is given as the first conformation listed.

Results/Discussion

Fig. 2. Predicted Binding Affinities (values shown in kcal/mol)

Given the wide range of computed binding affinities
and number of softwares, multiple trends have been observed
centering specific softwares or molecules. As seen in Fig-
ure 2, all 8 softwares overestimated the binding affinity of
Aspirin to Cyclooxygenase and the binding affinities all soft-
wares predicted with the lowest percent error were that of
Donepezil’s to Acetylcholinesterase and Monastrol’s to EG-
5 Kinesin. The percent errors of all molecules per software
and the average percent error per software is shown in the
heat map (Figure 3). As seen in Figure 4, PatchDock signif-
icantly overestimated the binding affinities of nine out of ten
ligands to their receptors with an average percent error rate
of 85%. The computed binding affinities for Acetaminophen
to Naloxone were relatively similar (not the most accurate)
across all softwares in comparison to the predictions for other
molecules for which softwares had computed a much larger
range of values for. Jobs for Anthramycin, Doxorubicin,
and Berberine were the most frequent to fail, most likely
because their receptors were nucleic acid macromolecules
which many softwares like DockThor, SwissDock, Achilles,
and ParDock did not support. The highest percent error of all
the queued docking jobs was found in PatchDock’s compu-
tation of Monastrol bound to EG-5 Kinesin at 140% and the
lowest percent error of all the jobs was surprisingly Achilles’s
computation of Monastrol bound to EG-5 at 0.45%. The soft-
ware with the lowest average percent error was found to be
ParDock with an average error of 16%, followed by DINC at
19%, AutoDock Vina at 23%, CB-Dock at 24%, DockThor at
25%, Achilles and SwissDock at 27%, and then PatchDock
at 85%. The majority of the softwares excluding PatchDock,
DINC, and ParDock, remained in the 20-30% error range.
Giving the least accurate affinities, PatchDock surprisingly
took the longest amount of time, around 4-6 days on average,
to compute the binding affinities of the 10 molecules, fol-
lowed by DockThor which took 4-6 hours, SwissDock which
took 30 minutes-1 hour, ParDock which took 15-30 minutes,
Achilles which took 5-10 minutes, CB-Dock which took 3-5
minutes, DINC which took 1-2 minutes, and AutoDock Vina
which took less than one minute. The most versatile soft-
wares, judged based on their ability to dock various ligand
shapes and sizes, support different types of atoms on ligands,
and support different types of receptor macromolecules, were
seen to be PatchDock, AutoDock Vina, and CB-Dock which
computed results for all 10 molecules, followed by DINC
which produced results for 9 molecules, DockThor, ParDock,
and SwissDock which produced results for 7 molecules, and
Achilles which produced results for 5 molecules. This dis-
parity is due to some softwares not supporting certain atoms
on ligands, larger ligands, and nucleic acid receptors, which
will be explained below.

Docking Errors

Out of the eight softwares that our project revolved around,
only three gave results for all ten molecules: Autodock
Vina, Patchdock, and CB-Dock. DINC was unable to dock
the berberine-TLR4-MD-2 complex, saying the docking job
couldn’t be processed. The remaining had the common error
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Fig. 3. Heat Map Depicting Percent Errors of All Softwares By Molecule and Accu-
racy Trends. The ± shown in Figure 2 beside the literature affinities for aspirin and
Taxol were not taken into consideration while calculating percent error.

Fig. 4. Column Chart Depicting Further Trends Related To Accuracy and Versatility

of not being able to run 3 specific molecules: Anthramycin,
Berberine, and Doxorubicin. Receptors for all three of these
molecules are DNA or nucleic acids. Hence, the discrep-
ancy with non-standard residues necessitates an alteration of
fundamental settings within the software. This feature con-
tributes to the versatility factor, as only 3 software settings
were successfully able to accept nucleic acids. DockThor,
Pardock and Swissdock produced results for all molecules
except the aforementioned complexes, and in these softwares,
the receptors produced errors while uploading. The three re-
ceptors would not load in Achilles, due to no alpha carbons
being detected in the ligands or receptors. Along with those
three complexes, Achilles could not run Taxol and Beta-
Tubulin and Atorvastatin-HMG-CoA reductase, giving the
error that the ligand had too many torsional degrees of free-
dom.

Scoring Rubric
As seen so far, softwares might perform well in one quota
but very poorly in other categories. AutoDock Vina was the
fastest and one of the most versatile softwares, but its predic-
tions of binding affinities, even though fairly accurate, were
outdone by other softwares like DINC and ParDock. Patch-
Dock, even though it was one of the most versatile softwares,
did not as accurately and quickly predict the binding affini-
ties like other softwares did. Since the versatility, accuracy,
and speed of the software are all crucial components of effi-
cient and effective molecular docking, the softwares were all
assessed on these three quotas which were weighted equally.
Each quota, accuracy, versatility, and speed, was scored out
of 100 points. Accuracy of each software was calculated as
the difference of the average percent error and 100 (ex. Par-
Dock which had an average percent error of 16% had an ac-
curacy of 84%). For each job successfully completed, soft-
wares received 10 points in the versatility category (ex. Since

Vina successfully ran all 10 molecules so it received 100/100
points in this category and Achilles successfully ran 5 of the
10 molecules so it received 50 points in this category). Since
there were only 8 softwares, points were designated as 12.5,
25. 37.5, 50, 62.5, 75, 87.5, and 100, from slowest to fastest
software (ex. Since Vina was the fastest it received 100 points
out of 100 and DINC being the second fastest received 87.5
points out of 100). Figure 5 displays the rubric and the final
scores, showing that AutoDock Vina, DINC, and CB-Dock
were the top three softwares respectively.

Fig. 5. Scoring Rubric for All Eight Docking Softwares

Conclusion
From this study, it can be concluded that AutoDock Vina,
DINC, and CB-Dock are the top proficient softwares given
their prompt speed, multifaceted capabilities, and their near-
precise predictions of binding poses and affinities. Due to
molecular docking’s high prevalence and importance in struc-
tural drug design, the results from this study can be virtually
applied to all other computational lab investigations and phar-
maceutical research. Given the hundreds of docking servers
available for commercial and leisure use in the industry, many
users face a challenge when it comes to choosing the correct
software given everyone’s varying needs and all of the soft-
wares’ varying potential. More accurate softwares tend to
require more time to predict binding poses while faster soft-
wares are less accurate, but even these trends are not seen
across all softwares given the various algorithms servers are
built on and the types of molecules that they are capable of
docking. All chosen softwares for this experiment are free
and open to the public so in order to cater to everyone’s vary-
ing needs, versatility, speed, and accuracy were weighted
equally, resulting in the aforementioned softwares perform-
ing the best out of all eight. AutoDock Vina, even though the
fastest and most versatile, requires a lot of receptor prepara-
tion before queuing a docking job. CB-Dock, a more user-
friendly software is not as accurate as DINC and AutoDock
and takes a little more time. DINC, even though it is not as
fast as Vina or as versatile as it and CB-Dock, it produces re-
sults very comparable to Vina and requires no receptor prepa-
ration. For these reasons, AutoDock Vina is the best docking
software for professional use and DINC, followed by CB-
Dock, is the best docking software for leisure use and begin-
ners.
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